jueves, 26 de noviembre de 2009

Los satélites naturales.
Alrededor de la mayoría de los planetas giran satélites, de manera similar a la Luna en torno de la Tierra. En Astronomía, el término satélite se aplica en general a aquellos objetos en rotación alrededor de un astro, este último es de mayor dimensión que el primero; ambos cuerpos están vinculados entre sí por fuerzas de gravedad recíproca.
Existe una diferenciación entre satélites naturales y artificiales. Los artificiales son los construidos por el hombre, y por lo tanto es factible, de alguna manera, de modificar su trayectoria. En las últimas décadas se han puesto en órbita una gran variedad de satélites artificiales alrededor de la Tierra y también de varios planetas.Los diferentes planetas poseen distinta cantidad de lunas. El número total en el Sistema Solar es alto y aún se considera incompleto, ya que se continúa encontrándose nuevas lunas.
En la actualidad el total de satélites es de 128, seguramente en los próximos años un número mayor de pequeños satélites serán descubiertos.
Número de Satélites de los Planetas
Planeta
Número de Satélites:
Tierra1
Marte2
Júpiter60
Saturno31
Urano 22
Neptuno11
Plutón 1

martes, 24 de noviembre de 2009


Naves espaciales.
Es un vehículo diseñado para funcionar más allá de la superficie terrestre, en el espacio exterior. Las naves espaciales pueden ser robóticas o sondas no tripuladas. La que pueden transportar personas poseen equipos para que los astronautas coman, se ejerciten, y hagan sus necesidades diarias.La nave espacial es uno de los elementos primarios de la ciencia-ficción. Hay muchísimos cuentos y novelas que tratan temas relacionados con las naves espaciales. Algunos libros de ciencia ficción dura se enfocan en detalles concernientes a las naves, mientras que otras consideran que las naves espaciales ya existen y no tratan casi nada sobre cómo funcionan.
Los cohetes constan de dos partes:
Cohete propiamente dicho:sección impulsora, compuesta de los motores y los depósitos de combustible.
Cabina:zona de tripulación o cápsula espacial.
Siendo por el momento este tipo de propulsión el único con referentes en la realidad práctica, debería suponerse más abundantes los ejemplos de su uso en la ciencia ficción. Pudo ser así en la ciencia ficción más temprana, antes de generalizarse el uso de la fisión atómica como fuente de energía. Cuando la energía atómica se hizo una realidad, la soñadora mente de los escritores abandonó al viejo cohete como medio de salir de la Tierra.
Aún así se ha convertido en el emblema de toda una época y autores como Ray Bradbury, en Crónicas marcianas (1950), lo asociaron a su obra de manera casi indisoluble (si bien es posible que el tremendo calor del verano del cohete no fuera producido por combustión).
Los cohetes químicos tienen una autonomía muy limitada debido a su enorme gasto de masa propelente y sería poco probable que nos llevasen mucho más allá de Marte. De hecho, sin poder desterrar totalmente este tipo de impulsor, la NASA está evaluando la posibilidad de construir un cañón electromagnético en la falda de una montaña para auxiliar en el despegue a las lanzaderas espaciales, ahorrando combustible y disminuyendo los riesgos de accidentes.
En La Luna es una cruel amante, Robert A. Heinlein, ya en 1966, utiliza una catapulta electromagnética para acelerar carga desde una base lunar a la Tierra y el mismo mecanismo es usado por Arthur C. Clarke en el relato Maelstrom II, de 1965. Estas obras, alejadas de la fantasía de las revistas pulp, pretenden abordar el tema de la colonización de cuerpos cercanos con cierto rigor científico

Eclipse.
Es un suceso en el que la luz procedente de un cuerpo celeste es bloqueada por otro, normalmente llamado ''cuerpo eclipsante''.Normalmente se hablan de eclipses de Sol y de Luna, que ocurren solamente cuando el Sol y la Luna se alinean con la Tierra de una manera determinada. Esto ocurre durante algunas Lunas nuevas y Lunas llenas.
Sin embargo, también pueden ocurrir eclipses fuera del sistema Tierra-Luna. Por ejemplo, cuando la sombra de un satélite toca la superficie de un planeta, cuando un satélite pasa por la sombra de un planeta o cuando un satélite proyecta su sombra sobre otro satélite.
Un eclipse, al igual que los tránsitos y ocultaciones, es un tipo de sizigia.
Los eclipses del sistema Tierra-Luna sólo pueden ocurrir cuando el Sol, la Tierra y la Luna se encuentran alineados. Estos eclipses se dividen en dos grupos:
Eclipse lunar:La Tierra se interpone entre el Sol y la luna, oscureciendo a esta última. La Luna entra en la zona de sombra de la Tierra. Esto sólo puede ocurrir en luna llena. Los eclipses lunares se dividen a su vez en totales, parciales y penumbrales; dependiendo de si la Luna pasa en su totalidad o en parte por el cono de sombra proyectado por La Tierra, o únicamente lo hace por la zona de penumbra.
Eclipse solar:La Luna oscurece el Sol, interponiéndose entre éste y la Tierra. Esto sólo puede pasar en luna nueva. Los eclipses solares se dividen a su vez en totales, parciales y anulares.

Agujero negro.
Es una región finita del espacio-tiempo provocada por una gran concentración de masa en su interior, con enorme aumento de la densidad, lo que provoca un campo gravitatorio tal que ninguna partícula material, ni siquiera los fotones de luz, puede escapar de dicha región.
La curvatura del espacio-tiempo o «gravedad de un agujero negro» provoca una singularidad envuelta por una superficie cerrada, llamada horizonte de sucesos. Esto es debido a la gran cantidad de energía del objeto celeste. El horizonte de sucesos separa la región del agujero negro del resto del Universo y es la superficie límite del espacio a partir de la cual ninguna partícula puede salir, incluyendo la luz. Dicha curvatura es estudiada por la relatividad general, la que predijo la existencia de los agujeros negros y fue su primer indicio. En los años 70, Hawking, Ellis y Penrose demostraron varios teoremas importantes sobre la ocurrencia y geometría de los agujeros negros. Previamente, en 1963, Roy Kerr había demostrado que en un espacio-tiempo de cuatro dimensiones todos los agujeros negros debían tener una geometría cuasi-esférica determinada por tres parámetros: su masa M, su carga eléctrica total e y su momento angular L.
Se cree que en el centro de la mayoría de las galaxias, entre ellas la Vía Láctea, hay agujeros negros supermasivos. La existencia de agujeros negros está apoyada en observaciones astronómicas, en especial a través de la emisión de rayos X por estrellas binarias y galaxias activas.
El origen de los agujeros negros es planteado por el astrofísico Stephen Hawking en su libro titulado Agujeros negros y la historia del tiempo. Allí él mismo comenta acerca del proceso que da origen a la formación de los agujeros negros.
Dicho proceso comienza posteriormente a la muerte de una gigante roja (estrella de gran masa), llámese muerte a la extinción total de su energía. Tras varios miles de millones de años de vida, la fuerza gravitatoria de dicha estrella comienza a ejercer fuerza sobre si misma originando una masa concentrada en un pequeño volumen, convirtiéndose de ese modo en una enana blanca. En este punto dicho proceso puede proseguir hasta el colapso de dicho astro por la auto atracción gravitatoria que termina por convertir a esta enana blanca en un agujero negro. Este proceso acaba por reunir una fuerza de atracción tan fuerte que atrapa hasta la luz en éste.

Estrellas.
Es todo cuerpo celeste que brilla con luz propia. Ahora bien, de un modo más técnico y preciso, podría decirse que se trata de un cúmulo de materia en estado de plasma en un continuo proceso de colapso, en la que interactúan diversas fuerzas que equilibran dicho proceso en un estado hidrostático. El tiempo que tarde en colapsar dicho cúmulo, depende del tiempo en el que las diversas fuerzas dejen de equilibrar la hidrostásis que da forma a la estrella.Son objetos de masas enormes comprendidas entre 0,08 y 120-200 masas solares (Msol). Los objetos de masa inferior se llaman enanas marrones mientras que las estrellas de masa superior parecen no existir debido al límite de Eddington. Su luminosidad también tiene un rango muy amplio yendo desde una diezmilésima a tres millones de veces la luminosidad del Sol.
Las estrellas se forman en las regiones más densas de las nubes moleculares como consecuencia de las inestabilidades gravitatorias causadas, principalmente, por supernovas o colisiones galácticas. El proceso se acelera una vez que estas nubes de hidrógeno molecular (H2) empiezan a caer sobre sí mismas, alimentado por la cada vez más intensa atracción gravitatoria. Su densidad aumenta progresivamente, siendo más rápido el proceso en el centro que en la periferia. No tarda mucho en formarse un núcleo en contracción muy caliente llamado protoestrella. El colapso en este núcleo es, finalmente, detenido cuando comienzan las reacciones nucleares que elevan la presión y temperatura de la protoestrella. Una vez estabilizada la fusión del hidrógeno, se considera que la estrella está en la llamada secuencia principal, fase que ocupa aproximadamente un 90% de su vida. Cuando se agota el hidrógeno del núcleo de la estrella, su evolución dependerá de la masa (detalles en evolución estelar) y puede convertirse en una enana blanca o explotar como supernova, dejando también un remanente estelar que puede ser una estrella de neutrones o un agujero negro. Así pues, la vida de una estrella se caracteriza por largas fases de estabilidad regidas por la escala de tiempo nuclear separadas por breves etapas de transición dominadas por la escala de tiempo dinámico (véase Escalas de tiempo estelar).
Muchas estrellas, el Sol entre ellas, tienen aproximadamente simetría esférica por tener velocidades de rotación bajas. Otras estrellas, sin embargo, giran a gran velocidad y su radio ecuatorial es significativamente mayor que su radio polar. Una velocidad de rotación alta también genera diferencias de temperatura superficial entre el ecuador y los polos. Como ejemplo, la velocidad de rotación en el ecuador de Vega es de 275 km/s, lo que hace que los polos estén a una temperatura de 10 150 K y el ecuador a una temperatura de 7 900 K.
La mayoría de las estrellas pierden masa a una velocidad muy baja. En el Sistema Solar unos 1020 gramos de materia estelar son expulsados por el viento solar cada año. Sin embargo, en las últimas fases de sus vidas, las estrellas pierden masa de forma mucho más intensa y pueden acabar con una masa final muy inferior a la original. Para las estrellas más masivas este efecto es importante desde el principio. Así, una estrella con 120 masas solares iniciales y metalicidad igual a la del Sol acabará expulsando en forma de viento estelar más del 90% de su masa para acabar su vida con menos de 10 masas solares.Finalmente, al morir la estrella se produce en la mayoría de los casos una nebulosa planetaria, una supernova o una hipernova por la cual se expulsa aún más materia al espacio interestelar. La materia expulsada incluye elementos pesados producidos en la estrella que más tarde formarán nuevas estrellas y planetas, aumentando así la metalicidad del Universo.

Galaxias.
Una galaxia (de la raíz griega galakt-, "lácteo", una referencia a nuestra propia Vía Láctea) es un masivo sistema de estrellas, nubes de gas, planetas, polvo, materia oscura, y quizá energía oscura, unidos gravitacionalmente. La cantidad de estrellas que forman una galaxia es variable, desde las enanas, con 1026, hasta las gigantes, con 1044 estrellas (segun datos de la nasa del ultimo trimestre del 2009). Formando parte de una galaxia existen subestructuras como las nebulosas, los cúmulos estelares y los sistemas estelares múltiples.

Tipos de galaxias.
Galaxias espirales:Las galaxias espirales son discos rotantes de estrellas y materia interestelar, con una protuberancia central compuesta principalmente por estrellas más viejas. A partir de esta protuberancia se extienden unos brazos en forma espiral, de brillo variable.
(Sa-d): Galaxia de forma espiral con brazos de
formación estelar. Las letras minúsculas indican cuán sueltos se encuentran los brazos, siendo "a" los brazos más apretados y "d" los más dispersos.
Galaxias lenticulares:(S0 y SB0): Forma de galaxia espiral sin brazos. E8 también se menciona como perteneciente a este tipo.
Galaxias espirales barradas:(SBa-d): Galaxia espiral con una banda central de estrellas. Las letras minúsculas tienen la misma interpretación que las galaxias espirales.
Galaxias irregulares: (Irr): Galaxia de forma espiral, pero que se encuentra deformada de algún modo.


Galaxia elíptica
(E0-7): Galaxia con forma de elipse. Pueden ser nombradas desde E0 hasta E7, donde el número significa cuán ovalada es la elipse; así, E0 sería una forma de esfera y E7 de plato o disco. También se puede decir que el número indica su excentricidad multiplicada por 10.
Su apariencia muestra escasa estructura y, típicamente, tienen relativamente poca materia interestelar. En consecuencia, estas galaxias también tienen un escaso número de cúmulos abiertos, y la tasa de formación de estrellas es baja. Por el contrario, estas galaxias están dominadas por estrellas viejas, de larga evolución, que orbitan en torno al núcleo en direcciones aleatorias. En este sentido, tienen cierto parecido a los cúmulos globulares.
Las galaxias más grandes son gigantes elípticas. Se cree que la mayoría de las galaxias elípticas son el resultado de la coalición y fusión de galaxias. Éstas pueden alcanzar tamaños enormes y con frecuencia se las encuentra en conglomerados mayores de galaxias, cerca del núcleo.

Galaxias irregulares

Galaxia irregular
Una galaxia irregular es una galaxia que no encaja en ninguna clasificación de galaxias de la secuencia de Hubble. Son galaxias sin forma espiral ni elíptica.
Hay dos tipos de galaxias irregulares. Una galaxia Irr-I (Irr I) es una galaxia irregular que muestra alguna estructura pero no lo suficiente para encuadrarla claramente en la clasificación de las secuencia de Hubble. Una galaxia Irr-II (Irr II) es una galaxia irregular que no muestra ninguna estructura que pueda encuadrarla en la secuencia de Hubble.
Las galaxias enanas irregulares suelen etiquetarse como dI. Algunas galaxias irregulares son pequeñas galaxias espirales distorsionadas por la gravedad de un vecino mucho mayor.
Apenas un 5% de las galaxias brillantes reciben el nombre de galaxia irregular.


Sisteme solar.
Es un sistema planetario de la galaxia Vía Láctea que se encuentra en uno de los brazos de ésta, conocido como el Brazo de Orión. Según las últimas estimaciones, el Sistema Solar se encuentra a unos 28 mil años-luz del centro de la Vía Láctea.
Está formado por una única estrella llamada Sol, que da nombre a este Sistema; más ocho planetas que orbitan alrededor de la estrella: Mercurio, Venus, la Tierra, Marte, Júpiter, Saturno, Urano y Neptuno; más un conjunto de otros cuerpos menores: planetas enanos (Plutón, Eris, Makemake, Haumea, Sedna y Ceres), asteroides, satélites naturales, cometas... así como el espacio interplanetario comprendido entre ellos.
Características generales.
Los planetas y los asteroides orbitan alrededor del Sol, en la misma dirección siguiendo órbitas elípticas en sentido antihorario si se observa desde encima del polo norte del Sol. El plano aproximado en el que giran todos estos se denomina eclíptica. Algunos objetos orbitan con un grado de inclinación considerable, como Plutón con una inclinación con respecto al eje de la eclíptica de 18º, así como una parte importante de los objetos del cinturón de Kuiper. Según sus características, y avanzando del interior al exterior, los cuerpos que forman el Sistema Solar se clasifican en:
Sol:Una estrella de tipo espectral G2 que contiene más del 99% de la masa del sistema. Con un diámetro de 1.400.000 km, se compone, de un 75% de hidrógeno, un 20% de helio y el 5% de oxígeno, carbono, hierro y otros elementos.
Planetas: Divididos en planetas interiores (también llamados terrestres o telúricos) y planetas exteriores o gigantes. Entre estos últimos Júpiter y Saturno se denominan gigantes gaseosos mientras que Urano y Neptuno suelen nombrarse como gigantes helados. Todos los planetas gigantes tienen a su alrededor anillos.
En el año 2006, una convención de astronomía en Europa declaró a Plutón como planetoide debido a su tamaño, quitándolo de la lista de planetas formales.
Planetas enanos:Esta nueva categoría inferior a planeta la creó la Unión Astronómica Internacional en agosto de 2006. Se trata de cuerpos cuya masa les permite tener forma esférica, pero no es la suficiente para haber atraído o expulsado a todos los cuerpos a su alrededor. Cuerpos como Plutón (hasta 2006 considerado noveno planeta del Sistema Solar), Ceres, Makemake y Eris están dentro de esta categoría.
Satélites:Cuerpos mayores orbitando los planetas, algunos de gran tamaño, como la Luna, en la Tierra, Ganímedes, en Júpiter o Titán, en Saturno.
Asteroides:Cuerpos menores concentrados mayoritariamente en el cinturón de asteroides entre las órbitas de Marte y Júpiter, y otra más allá de Neptuno. Su escasa masa no les permite tener forma regular.
Objetos del cinturón de Kuiper. Objetos helados exteriores en órbitas estables, los mayores de los cuales serían Sedna y Quaoar.
Cometas:Objetos helados pequeños provenientes de la Nube de Oort

La evolución del universo.
La cosmología es la ciencia que estudia el origen y la evolución del universo. Enlaza teorías y observaciones presentes, para inferir el mecanismo de evolución del universo, desde el principio.
El modelo del Big Bang, como inicio del universo, está hoy ampliamente aceptado por la comunidad científica. Entre las evidencias empíricas que la respaldan, cabe mencionar, entre otros, la expansión del universo (Ley de Hubble), la radiación de fondo de microondas y la abundancia de elementos primordiales (relación entre hidrógeno y helio-4, helio-3, deuterio y litio-7).

Descripción de las grandes etapas.

El Big Bang:De acuerdo a este modelo, el universo inició hace unos 15.000 millones de años, como una vasta explosión que generó el espacio y el tiempo. A partir de entonces, la densidad y la temperatura fueron disminuyendo.

Expansión y enfriamiento:Emergen las fuerzas naturales, conocidas hoy en día: gravedad, interacción nuclear fuerte, fuerza nuclear débil y electromagnetismo. El universo está compuesto de partículas elementales que incluyen: quarks, electrones, fotones y neutrinos. Los protones y los neutrones se comienzan a formar.

102a 1013segundos formación de primeros núcleos:El universo sigue expandiéndose. Se forman los primeros núcleos de hidrógeno y helio. Aún hoy, son los elementos más abundantes en el Universo.

1013 en adelante: el universo se torna transparente:El universo, que hasta entonces ha sido una inmensa nube de gas caliente en expansión, se enfría suficientemente como para que los electrones se puedan combinar con los núcleos de hidrógeno y helio. Se forman los primeros átomos. Se separa la materia de la energía. Esa organización permite que los fotones no se dispersen y sigan viajando indefinidamente. Estos mismos fotones son los que se encontraron como “radiación de fondo”, ahora en forma de microondas debido a que su longitud de onda va aumentando en la medida en la que el universo se va expandiendo.

100 millones de años después: nacimiento de primeras estrellasMil millones de años después del Big Bang, la gravedad ejerció su influencia en el universo temprano. Amplificó las irregularidades en el gas en expansión. Algunas regiones de gas se tornaron muy densas, la concentración encendió estrellas. Eventualmente, los grupos de estrellas formaron las primeras galaxias. Estas pueden ser observadas hoy, como fueron entonces, con grandes telescopios.

Cuasares:Entre mil millones y tres mil millones de años después del Big Bang muchas galaxias se juntaron y formaron galaxias más grandes. En estos eventos de gran energía, a veces colapsaban estrellas en un centro común, tan denso que se formaba un hoyo negro. El gas que fluía hacia los hoyos negros se calentaba a tal punto que se encendía momentáneamente, generando lo que hoy se conoce como cuasar.

Supernova:Unos seis mil millones de años después del Big Bang, en las galaxias nacían y morían estrellas. En su etapas últimas, las estrellas masivas explotaban como grandes supernovas y, al hacerlo, dispersaban en el espacio interestelar elementos comunes, tales como oxígeno, carbono, nitrógeno, calcio y hierro. En las explosiones de estrellas supermasivas, también se creaban y dispersaban elementos más pesados, como oro, plata, plomo y uranio.


lunes, 23 de noviembre de 2009

Sondas espaciales.
Una sonda espacial es un dispositivo que se envía al espacio con el fin de estudiar cuerpos de nuestro Sistema Solar, tales como planetas, satélites, asteroides o cometas.
Las sondas espaciales se suelen denominar también satélites artificiales, si bien, estrictamente hablando, una sonda se diferencia de un satélite en que no establece una órbita alrededor de un objeto (ya sea la Tierra o el Sol), sino que se lanza hacia un objeto concreto, o bien termina con una ruta de escape hacia el exterior del sistema solar.Todas las sondas se montan sobre una estructura de soporte a la que se deben incorporar al menos estos tres sistemas:
Sistema energético: habitualmente Baterías y Paneles solares para proveer de electricidad a los sistemas, aunque también pueden incorporar fuentes radiactivas de energía.
Instrumental de observación, tales como cámaras fotográficas, o analizadores de espectro
Equipos de comunicación, consistente en diversos tipos de antenas para transmitir la información recolectada de vuelta a la Tierra.
El peso total de las sondas suele ser de varios cientos de kilos, aunque no es frecuente que superen la tonelada, debido a la limitación actual de nuestros cohetes para sacar de la órbita terrestre mayores pesos. No obstante, en 1997 se lanzó la sonda Cassini-Huygens con un peso total de 5.600 kg, incluyendo unos 3.100 kg de combustible. Las dimensiones típicas de las sondas oscilan entre 2 y 5 metros, aunque una vez en el espacio suelen desplegar antenas o paneles fotovoltaicos de mayores dimensiones.

Algunas sondas espaciales.

La Beagle 2:Es una sonda espacial, que forma parte de la misión Mars Express de la Agencia Espacial Europea. Debía amartizar en el planeta Marte el 25 de diciembre de 2003. Fue transportada por la sonda Mars Express, lanzada el 2 de junio de 2003, de la que se separó el 19 de diciembre de ese mismo año. Tras muchos infructuosos intentos de establecer comunicación con la sonda, fue declarada oficialmente perdida el 6 de febrero de 2004
Giotto fue una misión no tripulada de la ESA, que estudió el cometa Halley. El 13 de marzo de 1986 Giotto se aproximó a 596 km de él.

Giotto:También estudió el cometa Grigg-Skjellerup, al que llegó a acercarse a unos 200 kilómetros. En total fueron 2 cometas que estudió.
La nave recibió este nombre en honor del pintor medieval italiano Giotto, el cual pintó la estrella de Belén como el cometa Halley.

Zond: (Зонд; “sonda” en ruso) es el nombre de una serie de vehículos automáticos soviéticos ideados como sistemas de pruebas con vistas a un futuro alunizaje y puestas en servicio entre 1963 y 1970. La serie se inició con el despegue de las primeras naves Zond destinadas al estudio de Marte y Venus pasando por las cercanías de la Luna.

Phoenix o Phoenix Mars Lander: Es una sonda espacial construida por la NASA, lanzada el 4 de agosto de 2007 desde la base de Cabo Cañaveral con destino al planeta Marte. Su llegada se produjo a las 23:54 GMT del 25 de mayo de 2008 y la misión fue extendida hasta el 10 de noviembre de 2008.
El programa científico es un esfuerzo conjunto entre universidades de los Estados Unidos, Canadá, Suiza, Dinamarca y Alemania. Su objetivo primario fue llegar a una región cercana al Polo Norte marciano, desplegar su brazo robótico y hacer prospecciones a diferentes profundidades para examinar el subsuelo.
Telescopio.
Se denomina telescopio (del griego τῆλε "lejos" y σκοπέω "ver") al instrumento óptico que permite ver objetos lejanos con mucho más detalle que a simple vista. Es herramienta fundamental de la astronomía, y cada desarrollo o perfeccionamiento del telescopio ha sido seguido de avances en nuestra comprensión del Universo.
Gracias al telescopio —desde que Galileo en 1609 lo usó para ver a la Luna, el planeta Júpiter y las estrellas— pudo el ser humano empezar a conocer la verdadera naturaleza de los objetos astronómicos que nos rodean y nuestra ubicación en el Universo.
Tipos de telescopios
Radiotelescopio.
Un radiotelescopio capta ondas de radio emitidas por fuentes de radio, generalmente a través de una gran antena parabólica (plato), o un conjunto de ellas, a diferencia de un telescopio ordinario, que produce imágenes en luz visible.
Telescopio esracial.
Un observatorio espacial, también conocido como telescopio espacial, es un satélite artificial o sonda espacial que se utiliza para la observación de planetas, estrellas, galaxias y otros cuerpos celestes de forma similar a un telescopio en tierra. Se han lanzado una cantidad importante de telescopios espaciales a órbita, proporcionando mayor información y conocimiento del cosmos.
Telescopio reflector.
Un telescopio reflector es un telescopio óptico que utiliza espejos en lugar de lentes para enfocar la luz y formar imágenes. No se sabe con certeza cuál es el primer telescopio reflector, pero la idea de la utilización de espejos cóncavos y convexos colocados en ángulos indicados para observar grandes regiones a grandes distancias, se le atribuye a Leonard Digges en su libro Pantometría.
Telascopio refractor.
Un telescopio refractor es un telescopio óptico que refleja imágenes de objetos lejanos utilizando un sistema de lentes convergentes en los que la luz se refracta. La refracción de la luz en la lente del objetivo hace que los rayos paralelos, procedentes de un objeto muy alejado (en el infinito), converjan sobre un punto del plano focal. Esto permite mostrar los objetos lejanos mayores y más brillantes.
Su funcionamiento es muy similar al de un microscopio. Un refractor típico tiene dos lentes, una en el objetivo y otra en el ocular. Las curvaturas de la lentes y el material utilizado se diseñan para limitar al máximo el grado de aberración esférica y aberración cromática del instrumento.
Coordenadas celestes.
Las coordenadas celestes son el conjunto de valores que, de acuerdo con un determinado sistema de referencia, dan la posición de un objeto en la esfera celeste. Existen diversas coordenadas celestes según cuál sea su origen y plano de referencia. Una primera clasificación, en dos grandes grupos, atiende si se trata de coordenadas cartesianas o coordenadas esféricas.

Tipos de coordenadas.
Coordenadas horizontales: Plano de referencia: el horizonte del observador
Origen: topocéntrico
Coordenadas: azimut y altura o distancia cenital
Coordenadas horarias: Plano de referencia: el ecuador celeste y el meridiano celeste del observador
Origen: topocéntrico
Coordenadas: ángulo horario y declinación
Coordenadas ecuatoriales: Plano de referencia: el ecuador celeste
Origen: geocéntrico
Coordenadas: ascensión recta y declinación
Coordenadas eclípticas: Plano de referencia: la eclíptica
Origen: geocéntrico o heliocéntrico
Coordenadas: longitud celeste y latitud celeste, o longitud y latitud eclípticas
Coordenadas galácticas: Plano de referencia: el plano de la Vía Láctea
Origen: el centro de la Vía Láctea
Coordenadas: longitud galáctica y latitud galáctica.
Calendario.
El calendario (del latín calenda) es una cuenta sistematizada del tiempo para la organización de las actividades humanas. Antiguamente estaba basado en los ciclos lunares. En la actualidad, los diversos calendarios tienen base en el ciclo que describe la Tierra alrededor del Sol y se denominan calendarios solares.

Tipos de calendarios.

Calendario egipcio
Surge a principios del tercer milenio antes de Cristo y es el primer calendario solar conocido de la Historia. Estaba en pleno uso en tiempos de Shepseskaf, el faraón de la dinastía IV. En los Textos de las Pirámides ya se menciona la existencia de los días epagómenos. El papiro Rhind es el primer texto egipcio que menciona los 365 días del años.

Calendario juliano.
Es el antecesor del calendario gregoriano y se basa en el movimiento del sol para medir el tiempo. Desde su implantación en el 46 a. C., se adoptó gradualmente en los países europeos y sus colonias hasta la implantación de la reforma gregoriana, del Papa Gregorio XIII, en 1582. Sin embargo, en los países de religión ortodoxa se mantuvo hasta principios del siglo XX: en Bulgaria hasta 1917, en Rusia hasta 1918, en Rumanía hasta 1919 y en Grecia hasta 1923. A pesar de que en sus países el calendario gregoriano es el oficial, hoy en día las iglesias ortodoxas (excepto la de Finlandia) siguen utilizando el calendario juliano (o modificaciones de él diferentes al calendario gregoriano) para el cálculo de la fecha de Pascua.

Calendario gregoriano.
es un calendario originario de Europa, actualmente utilizado de manera oficial en todo el mundo. Así denominado por ser su promotor el Papa Gregorio XIII, vino a sustituir en 1582 al calendario juliano, utilizado desde que Julio César lo instaurara en el año 46 a. C. El Papa promulgó el uso de este calendario por medio de la bula Inter Gravissimas.

Calendario solar.
es aquel calendario cuyos días indican la posición de la Tierra en su revolución entorno al Sol.
Los calendarios elaborados de esta forma poseen un año de 365 días, que se amplia normalmente agregando un día extra en los
años bisiestos.
El primer calendario solar fue el
calendario egipcio, tras una reforma que sustituyó por éste el tradicional calendario lunar. El calendario solar fue adoptado posteriormente por el calendari juliano, antecedente del calendario gregoriano.
Otro calendario solar es el
calendario persa.

Esfera celeste.
La esfera celeste es una esfera ideal, sin radio definido, concéntrica en el globo terrestre, en la cual aparentemente se mueven los astros. Permite representar las direcciones en que se hallan los objetos celestes; así es como el ángulo formado por dos direcciones será representado por un arco de círculo mayor sobre esa esfera. Teóricamente se confunde con el de la Tierra: el Eje del mundo es el de rotación de la esfera celeste y es coincidente con el eje de rotación de la Tierra, por lo que se halla prácticamente centrada en el ojo del observador. Los astrónomos fundan sus mediciones en la existencia, en esa esfera, de puntos, círculos y planos convencionales: el plano del horizonte y el del ecuador celeste; el polo y el cenit; el meridiano, que sirve de origen para la medición del acimut. Resulta fácil hallar un astro o situarlo respecto a esos planos fundamentales.

sábado, 21 de noviembre de 2009

ASTRONOMIA

¿Que es la astronomia?
La astronomía es el estudio de todos los objetos celestes. Es el estudio de casi todas las propiedades del Universo desde estrellas, planetas y cometas hasta las más grandes estructuras cosmológicas y fenómenos a través de todo el espectro electromagnético y más. Es el estudio de todo lo que ha existido, lo que existe y todo lo que existirá. Desde el efecto de los más pequeños átomos hasta la aparición del Universo en las escalas más grandes.La astronomía es la más antigua de las ciencias naturales, data de la antigüedad, con orígenes en las prácticas religiosas, mitológicas y astrológicas de las civilizaciones antiguas En los inicios la astronomía involucraba observar los patrones regulares de los movimientos de los objetos celestes visibles, en especial el Sol, la Luna, las estrellas y la observación a ojo desnudo de los planetas. La posición cambiante del Sol en el horizonte o la aparición cambiante de las estrellas en el transcurso de un año fueron usadas para establecer calendarios agrícolas y rituales.